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USE CASE
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USE CASE

Industrial production - operational environment

• Energy demand of production

• Energy prices of grid-bound energy sources

• Indusdrial energy supply system the connection link - flexibility source
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FLEXIBILITY IDENTIFICATION

1. Calculation of cost-optimal production
(without considering flexibility) - BASELINE

• Energy prices and demand profiles as boudaries

• Solution of the corresponding UC problem

2. Identification of economic flexibilities

• Power supply trajectory remains fixed

• Price for flexibility provision is assumed

• Solution of the adapted UC-problem -> available Flexibility
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MATHEMATICAL FORMULATION
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Abbreviations  Indices 

p price in €/MWh  t time  G Gas purchase 

e energy in MWh/h  pos positive  EL Electricity purchase 

𝑃𝑚𝑎𝑥   maximum capacity in MW  neg negative  DH district Heating feed-in 

∆t time step in h  flex flexibility  OM Operation & Maintenance 

C costs  u units  baseline  

 

𝑚𝑖𝑛 

𝑡=1

𝑇

𝑝𝐺
𝑡 𝒆𝑮

𝒕 + 1 − 𝛿 𝑝𝐸𝐿
𝑡 𝒆𝑬𝑳

𝒕 − 𝛿 𝑝𝐸𝐿,𝐹𝑙𝑒𝑥
𝑡 𝒆𝑬𝑳,𝑭𝒍𝒆𝒙

𝒕 − 𝑝𝐷𝐻
𝑡 𝒆𝑫𝑯

𝒕 ∆𝑡 + 

𝒖

𝑪𝑶𝑴
𝒖

𝛿 𝜀 − 1 𝑃𝑚𝑎𝑥,𝑓𝑙𝑒𝑥,𝑝𝑜𝑠 ∆𝑡 ≤ 𝒆𝒆𝒍,𝒇𝒍𝒆𝒙
𝒕 ≤ 𝛿 𝜀 𝑃𝑚𝑎𝑥,𝑓𝑙𝑒𝑥,𝑛𝑒𝑔 ∆𝑡

𝛿 𝒆𝑬𝑳
𝒕 = 𝛿 𝑒𝐸𝐿,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑡
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Figure 1: power supply baseline at variable electricity 

prices 

 
Figure 2: power supply baseline at constant 

electricity prices 

  

 
Figure 3: gas supply baseline at variable electricity 

prices 

 
Figure 4: gas supply baseline at constant 

electricity prices 
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RESULTS - BASELINE

• Price profile has a significant influence on the energy purchase profile
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RESULTS – FELIBILITY POTENTIAL

 
Figure 1: positive flexibility - variable low-price 

scenario 

 
Figure 2: positive flexibility - constant low-price 

scenario 

 
Figure 3: positive flexibility – variable high-price 

scenario 

 
Figure 4: positive flexibility – constant high-price 

scenario 

 

 
Figure 1: negative flexibility with variable base 

electricity price 

 
Figure 2: negative flexibility with constant base 

electricity price 

 
Figure 3: negative flexibility with variable base 

electricity price 

 
Figure 4: negative flexibility with constant base 

electricity price 

 

• Limited potential for provision of positive flexibility (heat driven energy production), high costs

• Significantly higher potential for provision of negative flexibility was identified

• Considerable negative flexibility (>5MW) May be offered at negative prices

(due to reduction of gas incurred for self generation)

• Very efficient utilization of flexibility

• Base price profile also affects (economic) flexibility
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RESULTS – PLANT OPERATION

• Positive flexibility is rather provided at site 2, negative at both

• Some units are identidified as „must-run“  - due to generation capacity limits
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CONCLUSION & OUTLOOK

• Identification of flexibility is affected by various parameters –> necessitates advanced methods

• Baseline price profile affects (economic) flexibilities

• Significantly higher potential for provision of negative flexibility

– heat driven production rather an electricity consumer

• Considerable negative flexibility (>5MW) may be offered at negative prices – very beneficial utilization

• The identified flexibilities must not be misunderstood as actual revenues

• It is rather a possible potential to be marketed at flexibility and energy service markets

• Problem: Different timeframes, gate closure times and stochastic effects

➢ Development of a sufficient sophisticated bidding strategy is the actual ongoing research work
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